
26/18723 MATH4830 Tutorial

announcements :
- Mictenus am Aretun next meck.

- HW3 due 30/10 .
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Let n= NxT .
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let vetps , <(0) = V .
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Types of Points : PCS . pis called

Elliptic if K(p) > 0 · (k , kn 70 , same sign, like prints ana sphere) :
·Hyperbolic if K(p) <0 (Rickn #0 , differentsign)
· Parabolic if ((p)= 0 . (Pneuf Ry , kz =0
· Planar if Sp =00(k1=k=0
· Umbilical if k ,=R2 : (including the plumar case) .

(i) .

: Show that a surface that is compact has at least one elliptic point .
"Geometric Proof"

PF :
D
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melwe shick Rutl there is at least one point& oftangency between Sand B40 ,R) , say po .-Os--- ..S at po, 1 .0 :



"analytic Proof" : Since Sis cpt, the function f : S-R by f(p) = (p1l attains
max at some print , say poonS . Letx() bea ame on Ss .t . x(0)= po .

Then by maximums aff(x(t)) (t=> = 0 = 0 = 2 a (0) -<(0) ·
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-In particular, let 2i() = p , <C) = hi . ↳are-lengt
where vils) is the ith principal direction at po for i

= 1 ,2. paran

Iand me get ki(ki()+150 . -> Ki int < for i=1 ,2 ,
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22 : Show that these exist is compact
minimal surfaces in R3 :

R
= k :(p) , k2= kelp) ·CHE0) .

P : Suppose there is one, says · Then at each print of S, H = =(k ,+kz)=
=> ↳ , he have opposite signs, or M ,kz=0 .

-) S has us ellipticpoints (only planar or hyperbolic or panabolic points) ·
which contradicts Ou above


