$26 / 10 / 23$
MATH4030 Tutroial
announcements:

- Mictermis ain to retimnext meeh.
- HW3 due 30/10.

Recall: $S_{\text {is }}$ an orientable surface. Can pich some orientation $N \leadsto$ for $p \in S, S_{p}(v)=-\frac{d}{d t} N$, at $p \in S$, can diagonalize the shape operator

$$
\left.S_{p}=\left[\begin{array}{ll}
k_{1} & 0 \\
0 & k_{2}
\end{array}\right] \text { (dependiy on } P\right) \text { u/ eigenvectors } u_{1}, u_{2} \text {. }
$$

Gaussian amatuer
Meem cunatue $H(p)=\frac{1}{2} \operatorname{tr} S_{p}=\frac{1}{2}\left(k+k_{2}\right)$.
n_{1}, k_{2} are pimpal aneatuen
u_{1}, u_{2} are pricipal diection.
Sps we haie a ame α in S.
$\alpha^{\prime}=\tau, N$ is unt nowal wit. S.

let $n=N \times T$.
then $\{T, n, N\}$ is positimly oriented and we urite T^{\prime} in the basis $\{n, N\}$,

$$
T^{\prime}=k_{g} n+k_{n} N
$$

gesdesic anatuce nomal anratue.

$$
k_{n}=k\left\langle N_{\alpha}, N\right\rangle=k \cos \theta \text {. were }
$$

nomal vector wor. $\&$

let $v \in T_{p} S, \alpha^{\prime}(0)=v$. Then we wite $v=u_{1} \cos ^{6} l+u_{2} \sin l$.
Euleris Fomula: $k_{n}=I_{p}(v, v)=\left\langle S_{p}(v), v\right)$

$$
\begin{aligned}
& =\left\langle S_{p}\left(u_{1} \cos \varphi+u_{2} \sin \varphi\right), u_{1} \cos \varphi+u_{2} \sin \varphi\right) \\
& =\left\langle k_{1} \cos \varphi u_{1}+k_{2} \sin \varphi u_{2}, \cos \varphi u_{1}+\sin \varphi u_{2}\right\rangle \\
& =k_{1} \cos ^{2} \varphi+k_{2} \sin ^{2} \varphi .
\end{aligned}
$$

Types of Ports: $p \in S$. pis called
Elliptic if $K(p)>0 \quad\left(k_{1}, k_{2} \neq 0\right.$, same sign, like ports on a sphere),

- Hyperbolic if $K(\rho)<0 \quad\left(k_{1}, k_{2} \neq 0\right.$, dieferentsign)
- Parabolic if $K(p)=0$. (one of $k_{1}, k_{2}=0$)
- Planar if $S_{p}=0, \quad\left(k_{1}=k_{2}=0\right)$
- Umbilical if $k_{1}=k_{2}$ (including the planar case).

21: Show that a surface that is compact has of least one elliptic point.
f:

$B(O, R)$ Since $S_{\text {is }}$ copt, can enclose it in a sphere $B(0, R)$ and we shin R wind there is at least one point Itangencly between S ad $B(0, R)$, say p_{0}.
lot $p_{0}, K_{s} \geqslant K_{B}>0$.
"Cunalytic Proof": Smice S is pt, the function $f: S \rightarrow \mathbb{R}$ by $f(p)=\|p\|^{2}$ options max at some point, say po on S. Let $\alpha(t)$ be ave on S st, $\alpha(0)=p_{0}$. Then by maximum, $\left.\frac{d}{d t} f(\alpha(t))\right|_{t=0}=0 \Rightarrow 0=2 \alpha^{\prime}(0)-\alpha(0)$.

$$
\left.\frac{d^{2}}{d t^{2}} f(\alpha(t))\right|_{t=0} \leqslant 0 . \Rightarrow \alpha^{\prime \prime}(0) \cdot \alpha(0)+\alpha^{\prime}(0) \cdot \alpha^{\prime}(0) \leqslant 0
$$

N at po can be written as $\frac{\alpha(0)}{|\alpha(0)|}$.
Then $\alpha^{\prime \prime}(0) \cdot \alpha(0)+\alpha^{\prime}(0)-\alpha^{\prime}(0)=\alpha^{\prime \prime}(0) \cdot N|\alpha(0)|+\alpha^{\prime}(0) \cdot \alpha^{\prime}(0)$

$$
\begin{aligned}
& b / c \text { at } 0 \text {, } \\
& \left.\left\langle\alpha^{\prime \prime}, N\right\rangle=-\left\langle\alpha^{\prime}, d N\right\rangle \rightarrow|\alpha(0)|<-d N\left(\alpha^{\prime}(0)\right), \alpha^{\prime}(0)\right\rangle+\alpha^{\prime}(0) \cdot \alpha^{\prime}(0) \\
& \left.=|\alpha(0)|<S_{p}\left(\alpha^{\prime}(0)\right), \alpha^{\prime}(0)\right\rangle+\alpha^{\prime}(0) \cdot \alpha^{\prime}(0) \leqslant 0 \text {. }
\end{aligned}
$$

In patceular, let $\alpha_{i}(0)=p, \quad \alpha_{i}^{\prime}(0)=u_{i}$. where $u_{i}(0)$ is the $i^{\text {th }}$ principal direction at po for $i=1,2$,

F Tarcellagth poznan.
and we get $k_{i}\left|u_{i}(0)\right|+1 \leqslant 0 \Rightarrow k_{i} \leqslant \frac{-1}{|4(0)|}<0$ for $i=1,2$ ie $K\left(p_{0}\right)>0$. /

Q2. Sun the nt there exist no compact minimal surfaces in \mathbb{R}^{3} :

$$
\begin{aligned}
& \text { mumimar surfaces m } \mathbb{K}^{\prime} \quad k_{1}=k_{1}(\varphi), k_{2}=k_{2}(p) .
\end{aligned}
$$

Pf: Suppose there is one, say S. wen of each point of $S, H=\frac{1}{2}\left(k_{1}+k_{2}\right)=0$
$\Rightarrow k_{1}, k_{2}$ have opposite signs, or $k_{1}, k_{2}=0$.
$\Rightarrow S$ has no elliptic points (only planar or luyperbodic or parabolve points). which contradicts Q1 above.

